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Taxonomy of Generative Models

Deep Generative Models

Autoregressive Flow-based Latent variable = Energy-based
models models models models
(e.g., PixelCNN) (e.g., RealNVP)
Implicit models Prescribed models

(e.g., GANs) (e.g., VAES)



Latent Variable Models

e X = observed variable
e / = |atent variable

*z ~ p(z)
* X ~ p(x|z)

A latent variable model and a generative process. Note the low-dimensional
manifold (here 2D) embedded in the high-dimensional space (here 3D)

* Factorization of the joint model
p(x,z) = p(x|z)p(2)
* Marginalization of the model

p(x) = f p(x|2)p(2)dz



Probabilistic Principal Component Analysis: Model

* We consider continuous random variables only, i.e.,
zeRYandx € RP withM « D
 The distribution of z is the standard Gaussian, i.e.,
p(z) = N (z]0,I).

* The dependency between z and x is linear and we assume a Gaussian additive
noise:
x=Wz+b+¢

* Here € ~ N (|0, a%I) and independent from z.



Probabilistic Principal Component Analysis: Model

 PPCA Model
x=Wz+b+e¢ z~N(z0]I), €~ N(e0,0°I).

e x is a linear combination of Gaussians, thus p(x) = N (x|b, WW' + ¢4I)
because

Elx]| =E|Wz|+ b+ E|lel] =WE|[z] +b+0=0b
Cov|x] = Cov[Wz+ b+ €] = WCov(z2)W' + Cov[e] = WWT + ¢?I

* x|z is a constant + a Gaussian, thus p(x|z) = N (x|Wz + b, 0°I) because

Elx|z]| =Wz+ b+ Ele] =Wz+b
Cov|x|z] = Cov|e] = o°I



Probabilistic Principal Component Analysis: Model
* PPCAmodel: x =Wz + b + € p(z) = N(z|0,1), p(e) = N(€|0, a?I),

p(x|z) = N (x|Wz + b, c?]), p(x) = N(x|b, WW?' + ¢2I)
e Let M = W'W + g?I. We can compute the conditional distribution of (z|x) as

p(x|z)p(z)
p(x)

o o~ 2o7IWZBIP = Fiiz?

p(z|x) =

TwTwz—22"WT (x-b)+02||2||?) 2(zTMz 2zTWT (x—b))

p(z]|x) x e 2577 X e 2o

P(Z|x) — N(Z | M_le(x _ b),O'ZM_l)



Probabilistic Principal Component Analysis: Learning

* Recall the ML estimators of the parameters of a Gaussian N (x|u, X) are

N N

1 1 .

Hy = Nin: Ly =NZ(xi_ﬂN)(xi_”N)
L= 1=

* For PPCA we need to estimate the parameters of a Gaussian with structured
covariance £ = WWT + o21. The estimate of the mean is the same as before
U = uy. To estimate W, recall the log-likelihood

N N
f = —Elog(det(Z)) — 5trace(2‘1ZN)

* Taking derivatives w.r.t. W we get

a6 900X N . . B
6_W:02‘.6W:_E(z —X ZNZ )ZW:0=>ZNZ W=W




Probabilistic Principal Component Analysis: Learning

* We this need to solve the nonlinear equations
SvEITIW =W and T =WWT + o621

* A trivial solution is W = 0, but this is a minimum of the log-likelihood.

* Another solution is X = X, but this would require the structure of the sample

covariance Xy to match the structure of X = WWT + ¢%I, i.e., the smallest

eigenvalues would need to be all equal to each other and equal to ¢*.

* Alternatively, let

I, O
W=[Z1 Zz] !

0 O] [V1 Vz]T — Z1F1V{
* Then
X=WW" +06%l =2,I%Z} +0%(Z,ZY +Z,Z)) =Z, (Y + 6> DZ} + 6%Z,Z),

>w=2Z,I{+6?*°D2 +06722,20)2,r VI =Z,(I'} + D70, V]



Probabilistic Principal Component Analysis: Learning
* Therefore, SN2~ W =W = Xy Z, (T + a2 DI WVE = Z, T,V

* This leads to
SvZ(TE+ 02D =2, = EyZ, =Z, T} +02I) = Xyz; = (v} +0?)z;
* In other words, z; is an eigenvector of X, with eigenvalue yl-z + o°.
A O
0 A,
* Therefore, W = Z,IyVI = U, (A, — a?2DY/?VT
* Having “almost” found W, we now need to find o.

* Thus if ZN — [Ul Uz] ][Ul Uz]T, thenZl — Ul, 1"12 +O-21 — Al'



Probabilistic Principal Component Analysis: Learning
* Recall the log-likelihood

N N
{ = —Elog(det(Z)) — Etrace(Z‘lzN)

* We have £ = WW! + 621, and W = Z,T,V! so
> = (U(TZ +c? DU +02U,UY)
>z, =W, T+ DU +672U0,UY)(UALUT + U,A,UY)

e Substituting into the log-likelihood, we get

N N
P — —Elog(det(Al)Uz(D_d)) — E(d + o ~*trace(A,))



Probabilistic Principal Component Analysis: Learning

¢ N

e Taking the derivative yields Py il E(

D—d  trace(A,)

g2 o4

) — 0 = 0_2 _ trace(A,)
D—d

* Theorem The ML estimates for the parameters of the PPCA model u, B, and o
can be obtained from the ML estimates of the mean and covariance of the data,
WUy and Xy, respectively, as

D
1
U= uy, W = Ul(Al — A21)1/2R and g% = D——d Z /1i
i=d+1
* where Uj is the matrix with the top d eigenvectors of Xy, A4 is the matrix with

the corresponding top d eigenvalues, R € R%*? is an arbitrary orthogonal matrix,
and A; is the ith largest eigenvalue of Xy.



PPCA as an Encoder Decoder Architecture
p(zlx) =NM W' (x —b),07°M) p(x|z) = N(x|Wz + b,c*I)
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Application of PPCA to Generating Face Images

Fig. 2.2 Face images of subject 20 under 10 different illumination conditions in the extended Yale
B data set. All images are frontal faces cropped to size 192 X 168.



Application of PPCA to Generating Face Images

y
(a) mean face (b) first eigenface (¢) second eigenface

Fig. 2.5 Mean face and the first two eigenfaces by applying PPCA to the ten images in Figure 2.2.



Application of PPCA to Generating Face Images

(b) Variation along the second eigenface

Fig. 2.6 Variation of the face images along the two eigenfaces given by PPCA. Each row plots
p+yufory,=—1:3:1i=12
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